Upconversion nanoparticles incorporated with three-dimensional graphene composites for electrochemical sensing of baicalin from natural plants

RSC Adv. 2024 Nov 11;14(48):36084-36092. doi: 10.1039/d4ra06540a. eCollection 2024 Nov 4.

Abstract

Chinese medicine has been widely studied owing to its many advantages. Baicalin (Bn), extracted from natural plants, has been shown to have significant anti-inflammatory and anticancer activity. Therefore, it is of great significance to develop a suitable method to detect the content of Bn in traditional Chinese medicine. Herein, we report an electrochemical sensor for the sensitive detection of Bn in Scutellaria root samples through a synergistic effect between upconversion nanoparticles (UCNPs) and three-dimensional macroporous graphene (3DG). The prepared UCNP-3DG composite was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction spectroscopy (XRD). This proposed sensor exhibited a low detection limit of 3.8 × 10-8 M (S/N = 3). Importantly, the established method possesses good stability and selectivity and can successfully detect Bn in Scutellaria root samples. It provides a suitable strategy for the determination of Bn and has potential application prospects in the assay of traditional Chinese medicine.