Notch1 and Notch2, transmembrane receptors belonging to the Notch family, are pivotal mediators of intercellular communication and have profound implications including cell fate determination, embryonic development, and tissue homeostasis in various cellular processes. Despite their structural homology, Notch1 and Notch2 exhibit discrete phenotypic characteristics and functional nuances that necessitate their individualized targeting in specific medical scenarios. Aberrant Notch signaling, often driven by the dysregulated activity of one receptor over the other, is implicated under various pathological conditions. Notch1 dysregulation is frequently associated with T-cell acute lymphoblastic leukemia, whereas Notch2 perturbations are linked to B-cell malignancies and solid tumors, including breast cancer. Hence, tailored therapeutic interventions that selectively inhibit the relevant Notch receptor need to be devised to disrupt the signaling pathways driving the specific disease phenotype. In this review, we emphasize the importance of distinct tissue-specific expression patterns, functional divergence, disease-specific considerations, and the necessity to minimize off-target effects that collectively underscore the significance of "individualized" targeting for Notch1 and Notch2. This comprehensive review sheds light on the receptor-specific characteristics of Notch1 and Notch2, providing insights into their roles in cellular processes and offering opportunities for developing tailored therapeutic interventions in the fields of biomedical research and clinical practice.
Keywords: B‐cell malignancies; Notch signaling; drug repurposing.
© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.