Hierarchical behavior control by a single class of interneurons

Proc Natl Acad Sci U S A. 2024 Nov 19;121(47):e2410789121. doi: 10.1073/pnas.2410789121. Epub 2024 Nov 12.

Abstract

Animal behavior is organized into nested temporal patterns that span multiple timescales. This behavior hierarchy is believed to arise from a hierarchical neural architecture: Neurons near the top of the hierarchy are involved in planning, selecting, initiating, and maintaining motor programs, whereas those near the bottom of the hierarchy act in concert to produce fine spatiotemporal motor activity. In Caenorhabditis elegans, behavior on a long timescale emerges from ordered and flexible transitions between different behavioral states, such as forward, reversal, and turn. On a short timescale, different parts of the animal body coordinate fast rhythmic bending sequences to produce directional movements. Here, we show that Sublateral Anterior A (SAA), a class of interneurons that enable cross-communication between dorsal and ventral head motor neurons, play a dual role in shaping behavioral dynamics on different timescales. On a short timescale, SAA regulate and stabilize rhythmic bending activity during forward movements. On a long timescale, the same neurons suppress spontaneous reversals and facilitate reversal termination by inhibiting Ring Interneuron M (RIM), an integrating neuron that helps maintain a behavioral state. These results suggest that feedback from a lower-level cell assembly to a higher-level command center is essential for bridging behavioral dynamics at different levels.

Keywords: Caenorhabditis elegans; feedback inhibition; hierarchical behavior; organizing behavior timescales.

MeSH terms

  • Animals
  • Behavior, Animal* / physiology
  • Caenorhabditis elegans Proteins / genetics
  • Caenorhabditis elegans Proteins / metabolism
  • Caenorhabditis elegans* / physiology
  • Interneurons* / physiology
  • Motor Neurons / physiology

Substances

  • Caenorhabditis elegans Proteins