There are only a few studies on the function of neuronal axon guidance molecules during low brain pH conditions. We previously reported that roundabout (ROBO) 2, a receptor for the axon guidance molecule SLIT, can bind to the neural epidermal growth factor-like-like (NELL) ligands in acidic conditions by conformational change of its ectodomain. Here, we show that the ROBO3 receptor also exhibits a pH-dependent increase in binding to the NELL2 ligand. We found that the Glu592 residue of ROBO3 at the binding interface between NELL2 and ROBO3 is a pH sensor and that the formation of a new hydrogen bonding network, due to protonation of the Glu592, leads to increased binding in acidic conditions. These results suggest that NELL2-ROBO3 signaling could be regulated by extracellular pH.
Keywords: axon guidance; extracellular pH; protein conformation; protein–protein interaction; structural model.
© 2024 The Author(s). FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.