Effects of four weeks intervention combining high-definition transcranial direct current stimulation and foot core exercise on dynamic postural stability

J Biomech. 2024 Nov 7:177:112418. doi: 10.1016/j.jbiomech.2024.112418. Online ahead of print.

Abstract

This study aimed to evaluate the effect of combining high-definition transcranial direct current stimulation (HD-tDCS) with foot core exercise (FCE) on dynamic postural stability and to determine whether the improvement achieved through this mix-type intervention outperforms the intervention of HD-tDCS and FCE alone. Sixty healthy males were recruited and randomly divided into four groups: (1) HD-tDCS + FCE group (HD-tDCS combined with FCE intervention); (2) s-tDCS + FCE (sham tDCS combined with FCE intervention); (3) HD-tDCS group which only received HD-tDCS; (4) FCE group which only performed FCE. All participants received a four-week intervention (3 times a week, 20 min each time). The Y-balance task was completed before and after the intervention. The maximum reaching distance was recorded, and the data of the center of pressure (COP) were collected by a three-dimensional force plate to calculate COP displacement and velocity. No significant change in COP displacement was found among the four groups. However, the COP velocity decreased significantly in the posteromedial direction after HD-tDCS + FCE intervention compared with the baseline. The maximum reach distance was significantly increased after HD-tDCS + FCE intervention in the posteromedial (p < 0.001) and posterolateral (p < 0.001) directions of the Y balance task compared with the baseline, and the extent of increase was greater than that in the three other groups. The intervention of HD-tDCS combined with FCE may exert a synergistic effect and more effectively improve dynamic postural stability.

Keywords: Center of pressure; Dynamic postural stability; Foot core exercise; High-definition transcranial direct current stimulation; Mix-type intervention.