Soft magnetic materials, like Ni0.5Zn0.5Fe2O4, require high temperatures and regulated environments for their manufacture and processing, which can be highly energy intensive. These requirements therefore result in higher production costs and energy consumption. To address this issue, the development of composite materials based on soft magnetic ferrites has become a prominent research area. The type of particles and their size distribution, shape, and dispersion within the polymer matrix can be crucial for controlling the magnetic properties. In this context, and to reduce energy consumption, the parameters of solid-state reaction (such as calcination temperature, calcination time, and milling time) were optimized in this work to produce magnetic particles with suitable shape and size for filling a thermoplastic matrix. The impact of these parameters on phase purity, morphology, particle size, and magnetic properties was thoroughly evaluated. The results highlight that the sample synthesized at 1200 °C for 6 hours achieved an impressive saturation magnetization value of 80.07 emu g-1, showcasing exceptional magnetic performance.
This journal is © The Royal Society of Chemistry.