Subduction of the Cocos and Nazca oceanic plates beneath the Caribbean plate drives the upward movement of deep fluids enriched in carbon, nitrogen, sulfur, and iron along the Central American Volcanic Arc (CAVA). These compounds fuel diverse subsurface microbial communities that in turn alter the distribution, redox state, and isotopic composition of these compounds. Microbial community structure and functions vary according to deep fluid delivery across the arc, but less is known about how microbial communities differ along the axis of a convergent margin as geological features (e.g., extent of volcanism and subduction geometry) shift. Here, we investigate changes in bacterial 16S rRNA gene amplicons and geochemical analysis of deeply-sourced seeps along the southern CAVA, where subduction of the Cocos Ridge alters the geological setting. We find shifts in community composition along the convergent margin, with communities in similar geological settings clustering together independently of the proximity of sample sites. Microbial community composition correlates with geological variables such as host rock type, maturity of hydrothermal fluid and slab depth along different segments of the CAVA. This reveals tight coupling between deep Earth processes and subsurface microbial activity, controlling community distribution, structure and composition along a convergent margin.
Copyright: © 2024 Basili et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.