Minor ginsenosides have demonstrated notable anti-fatigue capabilities. The aim of this study was to investigate the anti-fatigue mechanisms of total minor ginsenosides (TMGs) derived from a process involving probiotic fermentation and high-pressure steam treatment. The fatigue model was established in BALB/c male mice using weight-bearing swimming and TMGs were administered by orally at a dosage of 200 mg/kg for four weeks. The anti-fatigue mechanisms of TMGs were explored by assessing liver oxidative stress, skeletal muscle inflammation markers, as well as their impact on gut microbiota and serum metabolism. The results indicated that TMGs could significantly increase the levels of SOD, CAT, ATP and Na+-K+-ATPase and enhance the antioxidant capacity by modulating the PGC-1α/KEAP1/NRF2/HO-1 pathway. Meanwhile, TMGs reducing the levels of inflammatory factors TNF-α, IL-1β and IL-6 and inhibited inflammation by modulating the AMPK/TORC2/CREB/PGC-1α pathway. TMGs also regulated the gut microbiota, increasing the abundance of probiotic bacteria and the content of short-chain fatty acids (SCFAs) in the cecum. Serum metabolomics analyses have shown that TMGs can significantly affect the serum metabolic profile of fatigue model mice, regulating metabolic markers through affecting anti-fatigue-related metabolic pathways. In conclusion, TMGs exerted significant anti-fatigue effects through antioxidant and anti-inflammatory effects, and alleviate fatigue by regulating gut microbiota and serum metabolism.
Keywords: Anti-fatigue; Gut microbiota; Inflammations; Metabolomics; Minor ginsenosides; Oxidative stress.
Copyright © 2024. Published by Elsevier Inc.