Parkinson's disease (PD) is a complex neurodegenerative disorder marked by the progressive loss of dopaminergic neurons in the substantia nigra. While current treatments primarily manage symptoms, there is increasing interest in alternative approaches, particularly the use of phytochemicals from medicinal plants. These natural compounds have demonstrated promising neuroprotective potential in preclinical studies by targeting key pathological mechanisms such as oxidative stress, neuroinflammation, and protein aggregation. However, the clinical translation of these phytochemicals is limited due to a lack of robust clinical trials evaluating their safety, efficacy, and pharmacokinetics. This review provides a comprehensive overview of the neuroprotective potential of phytochemicals in PD management, examining the mechanisms underlying PD pathogenesis and emphasizing neuroprotection. It explores the historical and current research on medicinal plants like Mucuna pruriens, Curcuma longa, and Ginkgo biloba, and discusses the challenges in clinical translation, including ethical and practical considerations and the integration with conventional therapies. It further underscores the need for future research to elucidate mechanisms of action, optimize drug delivery, and conduct rigorous clinical trials to establish the safety and efficacy of phytochemicals, aiming to shape future neuroprotective strategies and develop more effective, personalized treatments for PD.
Keywords: Clinical Translation; Neuromelanin; Neuroprotection; Parkinson’s disease; Phytochemicals.
© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.