Semiquantitative analysis of protein expression in heated rat lens using shotgun proteomics

Mol Med Rep. 2025 Jan;31(1):26. doi: 10.3892/mmr.2024.13391. Epub 2024 Nov 14.

Abstract

Previous studies have reported that a strong correlation between the estimated cumulative thermal exposure in the crystalline lens and the incidence of nuclear cataracts; however, the precise relationship between temperature and cataracts remains to be fully elucidated. In the present study, the shotgun liquid chromatography/mass spectroscopy‑based global proteomic approach was applied to investigate cataract‑inducing factors in lens cultured at normal (35.0˚C) and slightly warmer (37.5˚C) conditions. In the rat lens, 190 proteins (total) were identified. Of these, 48 proteins (25.3%) were found in lenses cultured at both 35.0˚C and 37.5˚C. Moreover, 85 proteins (44.7%) were unique to lenses cultured at 35.0˚C, while 57 proteins (30.0%) were unique to lenses cultured at 37.5˚C. Protein expression changes in rat lenses cultured at 37.5˚C were examined using a label‑free semiquantitative approach that uses spectral counting and Gene Ontology analysis. Filensin and vimentin protein expression, key factors in maintaining lens structure, were decreased. These findings may serve as a valuable indicator for elucidating the relationship between temperature and the onset of nuclear cataracts.

Keywords: cataract; lens; protein; shotgun proteomics; temperature.

MeSH terms

  • Animals
  • Cataract / metabolism
  • Cataract / pathology
  • Chromatography, Liquid
  • Eye Proteins* / metabolism
  • Gene Ontology
  • Hot Temperature
  • Intermediate Filament Proteins
  • Lens, Crystalline* / metabolism
  • Male
  • Proteome / analysis
  • Proteome / metabolism
  • Proteomics* / methods
  • Rats
  • Vimentin / metabolism

Substances

  • Eye Proteins
  • Proteome
  • filensin
  • Vimentin
  • Intermediate Filament Proteins

Grants and funding

Funding: No funding was received.