Anisotropic Heat Transfer in a Fibrous Membrane with Hierarchically Assembled 2D Materials

ACS Appl Mater Interfaces. 2024 Nov 14. doi: 10.1021/acsami.4c15588. Online ahead of print.

Abstract

Effective heat redistribution in specific directions is vital for advanced thermal management, significantly enhancing device performance by optimizing spatial heat configurations. We have designed and fabricated a hierarchical fibrous membrane that enables precise heat directing. By integrating hierarchical structure design with the anisotropic thermal conductivity of two-dimensional (2D) materials, we developed a fibrous membrane for anisotropic heat transfer. Such a structure is fabricated by aligning a 1D structured fiber in the 2D plane to achieve anisotropy at each scale level. The fiber units, where 2D nanosheets circumferentially and axially aligned, achieved a high axial thermal conductivity of 16.8 W·m-1·K-1 and advanced heat directing ability, confirmed by characterizations and simulations. The assembled membrane demonstrated an exceptional tensile strength (365 MPa) and high thermal conductivity (10.5 W·m-1·K-1) along the fiber axis. Our membranes are seen as a refined model for thermal management materials, combining the benefits of heat spreaders and thermal interface materials, thus being proficient in directing heat along programmed pathways. A practical wireless charging cooling demonstration illustrated this. Our methodology also proved versatile with different 2D fillers and various geometries. This research presents a method to achieve precise heat directing at the material's level, facilitating the systematic design of thermal management in electronics.

Keywords: Anisotropy; Fibers; Heat transfer; Thermal management; Two-dimensional materials.