The demand for seed-based restoration and revegetation of degraded drylands has intensified with increased disturbance and climate change. Invasive plants often hinder the establishment of seeded species; thus, they are routinely controlled with herbicides. Herbicides used to control invasive plants may maintain soil activity and cause non-target damage to seeded species. Activated carbon (AC), which has a high adsorption of many herbicides, has been incorporated into seed pellets and coatings (seed technologies) to limit herbicide damage. Though various AC seed technologies have been examined in numerous laboratory and field studies, questions remain regarding their effectiveness and how to improve it, and what causes variation in results. We synthesized the literature on AC seed technologies for dryland restoration and revegetation to attempt to answer these questions. AC pellets compared to seed coatings were more thoroughly tested in the field and generally provide strong herbicide protection. However, greater amounts of AC in seed coatings appear to increase their effectiveness. Seed coatings show more potential for use than pellets because they are less logistically challenging to use compared to pellets, but need more field testing and refinement. Results often differ between laboratory and field studies, suggesting that field studies are critical in determining realized effects. However, seedling establishment failures from other barriers make it challenging to evaluate the effectiveness of AC seed technologies in the field. AC seed technologies are an innovative tool that with continued refinement, especially if other barriers to seedling establishment can be overcome, may improve the restoration and revegetation of degraded drylands.
Keywords: HPPs; Herbicide protection pods; SETs; Seed coatings; Seed pellets.
Published by Elsevier Ltd.