Adaptor protein 3BP2 regulates gene expression in addition to the ubiquitination and proteolytic activity of MALT1 in dectin-1-stimulated cells

J Biol Chem. 2024 Nov 13;300(12):107980. doi: 10.1016/j.jbc.2024.107980. Online ahead of print.

Abstract

Dectin-1, a C-type lectin, plays important roles in the induction of antifungal immunity. Caspase recruitment domain-containing protein 9 (CARD9) is essential for the dectin-1-induced production of cytokines through the activation of NF-κB. However, the molecular mechanisms underlying the dectin-1-mediated activation of CARD9 have not been fully elucidated. Recently, we reported that the adaptor protein SH3 domain-binding protein 2 (3BP2) is required for the dectin-1-induced production of cytokines and activation of NF-κB, although the relationship between 3BP2 and CARD9 in dectin-1-mediated signaling remains unclear. Here, we report that 3BP2 is required for dectin-1-induced expression of several genes that may contribute to antifungal immunity in bone marrow-derived dendritic cells (BMDCs). The results of reporter assays using HEK-293T cells indicate that 3BP2 induces CARD9-mediated activation of NF-κB through B-cell leukemia/lymphoma 10, mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), and TNF receptor-associated factor 6-dependent mechanisms. In addition, we show that 3BP2 induces CARD9-mediated ubiquitination of cellular proteins and that MALT1 cleaves 3BP2 in a CARD9-dependent manner. Furthermore, we show that 3BP2 is required for the ubiquitination, in addition to the activation, of MALT1, which leads to MALT1-depenedent cleavage of 3BP2 in dectin-1-stimulated BMDCs. Finally, we identified hematopoietic cell-specific Lyn substrate 1 as a target of 3BP2, which is essential for dectin-1-induced expression of interleukin 10 in BMDCs. These results indicate that 3BP2 regulates gene expression and functions of MALT1 in dectin-1-stimulated cells and that 3BP2 plays an important role in the dectin-1-mediated antifungal immunity.

Keywords: BCL10; CARD9; MALT1; NF-kappa B; TRAF6; dectin-1; dendritic cells; signal transduction; spleen tyrosine kinase; ubiquitination.