Physical blending of fully π-conjugated polymers (FπCPs) is an effective strategy to achieve intrinsically stretchable films for the fabrication of flexible optoelectronic devices, but easily causes phase separation, nonuniform morphology and uncontrollable photo-electronic processing. This may cause low efficiency, unstable and nonuniform emission, and poor color purity, which are undesirable for deep-blue flexible polymer light-emitting diodes (FPLEDs). Herein, a "Like Dissolves Like" design principle to prepare semiconductor fluid plasticizers (SFPs) is established and intrinsically stretchable FπCPs films via external plasticization for high-performance deep-blue FPLEDs are developed. Three fundamental requirements are proposed, "similar conjugated skeleton, similar molecular polarity, and similar electronic structures," to prepare model-matched nonpolar M1 and polar M2 plasticizers for poly(9,9-dioctylfluorene) (PFO). Large-area plasticized PFO films exhibit an efficient, narrowband, and stable ultra-deep-blue electroluminescence (FWHM < 40 nm, CIE: 0.12, 0.04), uniform morphology, and excellent intrinsic stretchability (fracture strain >20% and crack-onset strain >120%). Efficient and uniform deep-blue FPLEDs based on stretchable PFO films are fabricated with a high brightness of ≈3000 cd cm-2. Finally, blended PFO films exhibit outstanding stretch-deformation cycling stability of their deep-blue electroluminescent behavior, confirming the effectiveness of the "Like Dissolves Like" principle to design matched SFPs for stretchable FπCP films in flexible electronics.
Keywords: deep‐blue flexible polymer light‐emitting diodes; semiconductor fluid plasticizing; stretchable fully π‐conjugated polymers film; uniform deep‐blue emission; “Like Dissolves Like”.
© 2024 Wiley‐VCH GmbH.