Despite the great number of experimental investigations in the area of psycho-neuro-endocrine-immunology showing that endocrine, nervous, and immune systems cannot be in vivo physiologically separated, the diagnosis and therapies of the pathologies of these three functional biological systems continue to be separately performed from a clinical practice point of view. The separation between experimental and clinical medicine became dramatic after the discovery of more than 10 human molecules provided by anti-inflammatory and antitumor activity, completely devoid of any toxicity, which may be subdivided into three fundamental classes, consisting of the pineal indole, beta-carboline, and methoxy-kynuramine hormones. Moreover, human systemic diseases, including cancer, autoimmunity, and cardiovascular pathologies, despite their different pathogenesis and symptomatology, are commonly characterized by a progressive decline in the endogenous production of pineal hormones, endocannabinoids, and Ang 1-7, with a consequent inflammatory status and diminished natural resistance against cancer. Then the evaluation of the functional status of the pineal gland, the endocannabinoid system, and ACE2-Ang 1-7 axis should have to be included within the laboratory analyses for the systemic diseases. Finally, the correction of cancer- and autoimmunity-related neuroimmune and neuroendocrine alterations could influence the clinical course of systemic diseases. In fact, preliminary clinical results would demonstrate that the neuroimmune regimen with pineal hormones, cannabinoids, and Ang 1-7 may allow clinical benefits also in patients affected by systemic pathologies, including cancer, autoimmunity, and cardiovascular diseases, who did not respond to the standard therapies.
Keywords: Angiotensin 1-7; Cancer; Cannabinoids; Interleukins; Melatonin; Neuroimmunomodulation; Pineal gland.
© 2025. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.