Crystalline/Amorphous Interface Engineering and d-sp Orbital Hybridization Synergistically Boosting the Electrocatalytic Performance of PdCu Bimetallene toward Formic Acid-Assisted Overall Water Splitting

ACS Appl Mater Interfaces. 2024 Nov 15. doi: 10.1021/acsami.4c14531. Online ahead of print.

Abstract

Advanced electrocatalysts capable of bifunctional catalysis for formic acid oxidation (FAOR) and hydrogen evolution reaction (HER) have garnered significant attention due to their exceptional energy efficiency. In this research, we have meticulously designed a PdCu bimetallene characterized by numerous crystalline/amorphous (c/a) interfaces and robust d-sp orbital hybridization, achieved by integrating the p-block metalloid boron within the PdCu matrix (B-PdCu-c/a). The B-PdCu-c/a bimetallene revealed a multitude of surface atoms and unsaturated defect sites, offering abundant catalytic active sites and an optimized electronic structure. The B2-PdCu-c/a exhibited the best performance in FAOR and HER, achieving a mass activity of 1106 mA mgcat-1 and an overpotential of 52 mV, respectively. Significantly, the two-electrode configuration of B2-PdCu-c/a∥B2-PdCu-c/a attained a low cell voltage of 0.19 V at 10 mA cm-2 during formic acid-assisted overall water splitting. Density functional theory (DFT) calculations indicated that c/a interface engineering and d-sp orbital hybridization synergistically optimized the electronic configuration of pristine PdCu bimetallene. This led to an elevation of the d-band center and an accumulation of charge at the c/a interface, which enhanced the adsorption of intermediates, facilitated C-H bond cleavage, and balanced the adsorption-desorption of hydrogen, thereby improving electrocatalytic activities for FAOR and HER, respectively. This study not only presents a viable strategy for effectively tuning the electronic configuration of bimetallene but also offers valuable insights into the development of electrocatalysts.

Keywords: Formic acid oxidation; bimetallene; crystalline/amorphous interface; d−sp orbital hybridization; hydrogen evolution.