EDAI Framework for Integrating Equity, Diversity, and Inclusion Throughout the Lifecycle of AI to Improve Health and Oral Health Care: Qualitative Study

J Med Internet Res. 2024 Nov 15:26:e63356. doi: 10.2196/63356.

Abstract

Background: Recent studies have identified significant gaps in equity, diversity, and inclusion (EDI) considerations within the lifecycle of artificial intelligence (AI), spanning from data collection and problem definition to implementation stages. Despite the recognized need for integrating EDI principles, there is currently no existing guideline or framework to support this integration in the AI lifecycle.

Objective: This study aimed to address this gap by identifying EDI principles and indicators to be integrated into the AI lifecycle. The goal was to develop a comprehensive guiding framework to guide the development and implementation of future AI systems.

Methods: This study was conducted in 3 phases. In phase 1, a comprehensive systematic scoping review explored how EDI principles have been integrated into AI in health and oral health care settings. In phase 2, a multidisciplinary team was established, and two 2-day, in-person international workshops with over 60 representatives from diverse backgrounds, expertise, and communities were conducted. The workshops included plenary presentations, round table discussions, and focused group discussions. In phase 3, based on the workshops' insights, the EDAI framework was developed and refined through iterative feedback from participants. The results of the initial systematic scoping review have been published separately, and this paper focuses on subsequent phases of the project, which is related to framework development.

Results: In this study, we developed the EDAI framework, a comprehensive guideline that integrates EDI principles and indicators throughout the entire AI lifecycle. This framework addresses existing gaps at various stages, from data collection to implementation, and focuses on individual, organizational, and systemic levels. Additionally, we identified both the facilitators and barriers to integrating EDI within the AI lifecycle in health and oral health care.

Conclusions: The developed EDAI framework provides a comprehensive, actionable guideline for integrating EDI principles into AI development and deployment. By facilitating the systematic incorporation of these principles, the framework supports the creation and implementation of AI systems that are not only technologically advanced but also sensitive to EDI principles.

Keywords: AI; EDI; artificial intelligence; equity, diversity, and inclusion; health care; machine learning; oral health care.

MeSH terms

  • Artificial Intelligence*
  • Cultural Diversity
  • Diversity, Equity, Inclusion
  • Health Equity
  • Humans
  • Oral Health*
  • Qualitative Research