The use of natural proteins as emulsifiers in stable emulsion systems has gained attention due to the increasing demand for healthy food products. However, the limited thermal stability and ionic tolerance of BBPH restrict its application in emulsions. This study explores the effects of FG on enhancing the stability of BBPH-based emulsions. FTIR and SEM confirmed that BBPH and FG form complexes through hydrophobic and electrostatic interactions, with increasing FG concentrations leading to higher turbidity and particle size. At 0.4 % FG, emulsions showed the smallest particle size (9.12 μm) and the highest zeta potential (-28.73 mV), indicating optimal interaction. Raman spectroscopy further supported these findings, showing enhanced oil-complex interactions and favorable rheological properties. The emulsions exhibited excellent stability during storage, with a creaming index of 1.786 % after 7 days. Oxidation tests showed low POV (0.596 mg/L) and TBARS (6.24 mg/L) after 15 days. FG also improved resistance to environmental stress, providing theoretical support for the broader use of BBPH in the food industry and highlighting FG's potential in stabilizing protein-based emulsions.
Keywords: Bovine bone by-products; Bovine bone protein hydrolysate; Flaxseed gum; Oxidative stability; Physical stability.
Copyright © 2024. Published by Elsevier B.V.