Triphenylamine-based Y-shaped organic sensitizers, specifically TPA-MN (1), TPA-CA (2), TPAT-MN (3), and TPAT-CA (4), are synthesized and utilized as p-type self-assembled monolayers (SAMs) for tin-based perovskite solar cells (TPSCs). These SAMs are developed using low-cost starting materials, primarily from triphenylamine (TPA) components. An extensive analysis is conducted to examine the crystalline, morphological, thermal, optical, electrochemical, and optoelectronic characteristics of SAMs 1-4, and the results are compared. A two-step method is employed to successfully develop tin perovskite layers on all four SAM surfaces. The resulting devices demonstrates PCE in the following order: TPAT-CA (8.1%) > TPAT-MN (6.1%) > TPA-MN (5.0%) > TPA-CA (4.2%). The TPAT-CA molecule, which contains a thiophene spacer, performed better than the other three SAMs in terms of rapid hole extraction rate, high hole mobility, and retarded charge recombination. Consequently, SAM TPAT-CA exhibited the highest device performance with excellent stability over time, retaining ≈90% from the beginning values after storage for 3000 h. The innovative Y-shaped SAMs describe in this study, characterized by their simple and efficient design, have the potential to contribute significantly to the advancement of perovskite photovoltaics, particularly in the development of cost-effective TPSC technology.
Keywords: Y‐shaped; self‐assembled monolayers; tin perovskite; triphenylamine.
© 2024 Wiley‐VCH GmbH.