High-altitude exposure leads to increased modularity of brain functional network with the increased occupation of attention resources in early processing of visual working memory

Cogn Neurodyn. 2024 Oct;18(5):1-20. doi: 10.1007/s11571-024-10091-3. Epub 2024 Mar 15.

Abstract

Working memory is a complex cognitive system that temporarily maintains purpose-relevant information during human cognition performance. Working memory performance has also been found to be sensitive to high-altitude exposure. This study used a multilevel change detection task combined with Electroencephalogram data to explore the mechanism of working memory change from high-altitude exposure. When compared with the sea-level population, the performance of the change detection task with 5 memory load levels was measured in the Han population living in high-altitude areas, using the event-related potential analysis and task-related connectivity network analysis. The topological analysis of the brain functional network showed that the normalized modularity of the high-altitude group was higher in the memory maintenance phase. Event-related Potential analysis showed that the peak latencies of P1 and N1 components of the high-altitude group were significantly shorter in the occipital region, which represents a greater attentional bias in visual early processing. Under the condition of high memory loads, the high-altitude group had a larger negative peak in N2 amplitude compared to the low-altitude group, which may imply more conscious processing in visual working memory. The above results revealed that the visual working memory change from high-altitude exposure might be derived from the attentional bias and the more conscious processing in the early processing stage of visual input, which is accompanied by the increase of the modularity of the brain functional network. This may imply that the attentional bias in the early processing stages have been influenced by the increased modularity of the functional brain networks induced by high-altitude exposure.

Supplementary information: The online version contains supplementary material available at 10.1007/s11571-024-10091-3.

Keywords: Brain functional network; CDA; ERP; High-altitude exposure; Working memory.