The complexity of risk assessment and the challenges in decision-making often impede the application of various models to renewable energy systems. This study introduces a comprehensive framework designed to streamline this process, facilitating informed decisions regarding the estimation of risks associated with solar photovoltaic (PV) technologies. Leveraging data and information available in the literature, the framework is particularly useful for manufacturers in selecting materials that balance low environmental risk with high efficiency. The framework emphasizes early-stage risk minimization by integrating changes during PV development, thereby promoting cleaner production systems. It's interconnected components encompass various approaches to risk assessment, control, and management, providing a structured methodology for risk reduction. Based on available information, the defined steps guide users through evaluating and mitigating risks. Applying risk minimization by metal substitution approach lowers the oral-ingestion and dermal-contact risk by a magnitude of four and six times, respectively. This framework will guide regulatory bodies throughout each step of the product life cycle, suggesting necessary changes and assessment strategies aligned with the perspectives of various stakeholders. By facilitating the identification and implementation of the most effective risk management strategies, the framework aims to advance the development of sustainable and safe PV technologies.
Keywords: Waste management; end-of-life solar; management framework; risk assessment; sustainable energy systems.