Experimental Spin-Orbit State-Resolved Differential Cross Sections of the S(1D) + D2 → SD(2Π3/2,1/2) + D Reaction at Collision Energies of 266.2 and 206.5 cm-1

J Phys Chem A. 2024 Nov 18. doi: 10.1021/acs.jpca.4c06605. Online ahead of print.

Abstract

The S(1D) + D2 → SD + D reaction is a prototype insertion chemical reaction that involves spin-orbit interactions in the exit channel. In this work, we report spin-orbit state-resolved differential cross sections (DCSs) of this reaction obtained by crossed beam experiments at collision energies of 266.2 and 206.5 cm-1. The DCSs of specific rovibrational states exhibit a slight preference for forward scattering. When integrated over all rotational quantum states within each spin-orbit manifold, the total angular distributions of the two manifolds show nearly forward-backward symmetry, indicating that the deep well responsible for the long-living complex-forming mechanism predominates the entire reaction dynamics. Moreover, significant spin-orbit preference was observed at rotational quantum number N > 9 in the vibrationally ground state of SD products. It was also observed that SD products in the vibrationally excited state v' = 1 prefer to populate in the 2Π3/2 manifold, with the 2Π3/2/2Π1/2 ratio of 15.8 and 25.2 at collision energies of 266.2 and 206.5 cm-1, respectively. The experimental spin-orbit state-resolved DCSs obtained in this work will be of great importance for developing an accurate diabatic theory that includes spin-orbit interactions for this title reaction.