Breast cancer concerns 1 in 8 women in the world and is followed in 40% of cases by a mastectomy. Only 14% of women receive reconstructive surgery because of unfavorable clinical issues. The need of innovative tissue engineering devices leads Lattice Medical company to bring a new 3D-printed device, allowing the regeneration of soft tissue in order to replace the withdrawn breast. The implant, based on TEC (tissue engineering chamber) and fat-flat surgical technique, is constituted with bioresorbable thermosensitive materials to be fully absorbed by the body in several months, once the regeneration process is completed. In this industrial context, we need to assess some properties for predictive simulation: the TEC mechanical and biological properties over time, its sensitivity to implantation in the body temperature, its batch raw material variability and its structural 3D-printed behavior. This would lead to a more enlightened numerical design and topological optimization work. To do so, mechanical testing are conducted to gather necessaries information for fully border the behaviour of the material and eventually the impact of the process on the final prosthesis. Then, the G'sell Law is chosen to model the mechanical behaviour of the material taking into account all particularities of this medical case. Finally, the behaviour law is used in Finite Element Method (FEM) in a compression simulation to compare with experimental results which find good similarity in the mechanical response.
Keywords: 3D-printing; Medical device; behaviour law; bioresorbable; finite element modelling.