Introduction: Although clinical, functional, and biomarker data predict asthma exacerbations, newer approaches providing high accuracy of prognosis are needed for real-world decision-making in asthma. Machine learning (ML) leverages mathematical and statistical methods to detect patterns for future disease events across large datasets from electronic health records (EHR). This study conducted training and fine-tuning of ML algorithms for the real-world prediction of asthma exacerbations in patients with physician-diagnosed asthma.
Methods: Adults with ≥ 2 ICD9/10 asthma codes within 1 year and at least 30 days apart were identified from the Optum Panther EHR database between 2016 and 2023. An emergency department (ED), urgent care, or inpatient visit for asthma, while on systemic administration of corticosteroids, was considered an exacerbation. To predict factors associated with exacerbations in a 6-month study period, clinical information from patients was retrieved in the preceding 6-month baseline period. Clinical information included demographics, lab results, diagnoses, medications, immunizations, and allergies. Three models built using Extreme Gradient Boosting (XGBoost), Long Short-Term Memory (LSTM), and Transformers algorithms were trained and tested on independent datasets. Predictions were explained using the SHAP (SHapley Additive exPlanations) library.
Results: Of 1,331,934 patients with asthma, 16,279 (1.2%) experienced ≥ 1 exacerbation. XGBoost was the best predictive algorithm (area under the curve [AUC] = 0.964). Factors associated with exacerbations included a prior history of exacerbation, prednisone usage, high-dose albuterol usage, and elevated troponin I. Reduced probability of exacerbations was associated with receiving inhaled albuterol, vitamins, aspirin, statins, furosemide, and influenza vaccination.
Conclusion: This ML-based study on asthma in the real world confirmed previously known features associated with increased exacerbation risk for asthma, while uncovering not entirely understood features associated with reduced risk of asthma exacerbations. These findings are hypothesis-generating and should contribute to ongoing discussion of the strengths and limitations of ML and other supervised learning models in patient risk stratification.
Keywords: Asthma; Electronic health records; Exacerbations; Machine learning; Physician-diagnosed asthma; Real-world prediction; XGBoost.
© 2024. The Author(s).