Galvanic vestibular stimulation (GVS) is an emergent tool for stimulating the vestibular system, offering the potential to manipulate or enhance processes relying on vestibular-mediated central pathways. However, the extent of GVS's influence on the perception of self-orientation pathways is not understood, particularly in the presence of physical motions. Here, we quantify roll tilt perception impacted by GVS during passive whole-body roll tilts in humans (N = 11). We find that GVS systematically amplifies and attenuates perceptions of roll tilt during physical tilt, dependent on the GVS waveform. Subsequently, we develop a novel computational model that predicts 6DoF self-motion and self-orientation perceptions for any GVS waveform and motion by modeling the vestibular afferent neuron dynamics modulated by GVS in conjunction with an observer central processing model. This effort provides a means to systematically alter spatial orientation perceptions using GVS during concurrent physical motion, and we find that irregular afferent dynamics alone best describe resultant perceptions.
Copyright: © 2024 Allred et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.