Novel mixotrophic denitrification biofilter for efficient nitrate removal using dual electron donors of polycaprolactone and thiosulfate

Bioresour Technol. 2024 Nov 16:131836. doi: 10.1016/j.biortech.2024.131836. Online ahead of print.

Abstract

A novel mixotrophic denitrification biofilter for nitrate removal using polycaprolactone and thiosulfate (MD-PT) as electron donors was investigated. MD-PT achieved high nitrate removal efficiency of approximately 99.8 %. The nitrate removal rates of MD-PT reached 1820 g N/m3/d, which was 304 g N/m3/d higher than that of autotrophic denitrification biofilter using thiosulfate (AD-T). Autotrophic and heterotrophic denitrification pathways in MD-PT were responsible for 67.6-94.5 % and 4.7-32.4 % of the nitrate removal, respectively. The production of SO42- in MD-PT was lower than that in AD-T, and the effluent pH was maintained at approximately 7.3 without acid-base neutralization. The abundance of key genes involved in carbon, nitrogen, and sulfur transformation was enhanced, which improved the nitrate removal of MD-PT. Alicycliphilus and Simplicispira related to organic compounds degradation were enriched after the addition of polycaprolactone. This research provided new insights into mixotrophic denitrification systems.

Keywords: Genes expression; Nitrate removal; Solid carbon source; Thiosulfate.