A Flexible Membrane May Improve Bone Regeneration by Increasing Hydrophilicity and Conformability in Lateral Bone Augmentation

Biomater Res. 2024 Nov 18:28:0113. doi: 10.34133/bmr.0113. eCollection 2024.

Abstract

Collagen membranes play a crucial role in guided bone regeneration (GBR) by preventing soft tissue infiltration and maintaining space for bone formation. This study investigated the impact of collagen membrane flexibility on GBR outcomes through in vitro and in vivo analyses. Flexible (0.3 mm in width) and stiff (0.5 mm in width) porcine collagen membranes were compared. In vitro tests assessed hydrophilicity, enzymatic degradation, conformability, space maintenance, and tensile strength. An in vivo study using a canine model evaluated bone regeneration in standardized mandibular defects filled with deproteinized porcine bone mineral and covered with no membrane, flexible membrane, or stiff membrane. Micro-computed tomography and histomorphometric analyses were performed at 8 and 16 weeks. The flexible membrane demonstrated superior hydrophilicity, faster enzymatic degradation, and greater conformability in vitro. In vivo, micro-computed tomography analysis revealed similar alveolar ridge widths across all groups. Histomorphometric analysis at 16 weeks showed significantly larger regenerated areas in the flexible membrane group compared to controls in coronal, middle, and apical regions. Both membrane groups exhibited higher regeneration ratios than controls, with significant differences in the coronal area. The flexible membrane group demonstrated significantly higher new bone formation in all regions compared to controls at 16 weeks. These findings suggest that flexible membrane substantially enhances GBR outcomes by increasing hydrophilicity and conformability. The study highlights the potential clinical benefits of incorporating flexible membranes in GBR procedures for improved bone regeneration outcomes.