Stimulating cardiomyocyte (CM) dedifferentiation and cell cycle activity (DACCA) is essential for triggering daughter CM formation. In addition to transcriptional processes, RNA-binding proteins (RBPs) are emerging as crucial post-transcriptional players in regulating CM DACCA. However, whether post-transcriptional regulation of CM DACCA by RBPs could effectively trigger daughter CM formation remains unknown. By performing integrated bioinformatic analysis of snRNA-seq data from neonatal and adult hearts, this study identified Hnrnpa1 as a potential RBP regulating CM DACCA. Hnrnpa1 expression decreased significantly during postnatal heart development. With the use of α-MHC-H2B-mCh/CAG-eGFP-anillin transgenic mice, Hnrnpa1 overexpression promoted CM DACCA, thereby triggering daughter CM formation and enhancing cardiac repair after myocardial infarction (MI). In contrast, CRISPR/Cas9 technology is used to generate CM-specific Hnrnpa1 knockout mice. Hnrnpa1 knockout inhibited cardiac regeneration and worsened cardiac function in the neonatal MI model. Nanopore RNA sequencing, RIP assay, IP-MS, MeRIP-qPCR, PAR-CLIP and luciferase reporter experiments showed that Hnrnpa1 induced Mettl3 post-transcriptional splicing to inhibit m6A-dependent Pbx1 and E2F1 degradation, thereby increasing Runx1, Ccne1, Cdk2 and Ccnb2 expression to promote CM DACCA. In conclusion, Hnrnpa1 triggered daughter CM formation by promoting CM DACCA in a post-transcriptional manner, indicating that Hnrnpa1 might serve as a promising target in cardiac repair post-MI.
Keywords: Hnrnpa1; RNA‐binding protein; daughter cardiomyocyte formation; dedifferentiation and cell cycle activity; post‐transcriptional regulation.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.