Glutathione (GSH) levels have been well validated to correlate with a variety of physiological and pathological conditions, such as malignancy, cardiovascular disease and aging, making the development of accurate, robust and sensitive GSH detection methods highly desirable. In this study, a novel metal-organic framework (MOF-Fe(DTNB))-based colorimetric method with a favorable dual-triggering function was proposed. MOF-Fe(DTNB) exhibits high peroxidase activity, which can catalyze the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB by hydrogen peroxide (H2O2). This oxidation process of TMB can be inhibited not only by the reducing action of GSH, but also by the thiol exchange reaction between DTNB and GSH, in which the disulfide bond of DTNB in MOF-Fe(DTNB) is cleaved. Thus, with this dual triggering mechanism, the GSH concentration can be robustly measured in the MOF-Fe(DTNB)-derived colorimetric strategy. Significantly, this method is accurate (RSD < 6 %), selective and sensitive in biological plasma samples, with satisfactory recovery rates (96.7-103.3 %). It requires less instrumentation and has less interference from other substances. The linear range of the method is 0-80 µM, and the detection limit is as low as 0.28 µM. This dual-triggering MOF-Fe(DTNB)-derived colorimetric strategy has greatly simplified the GSH detection processes with improved accuracy, in both acidic and basic environments, which has potent applications in biochemical analysis and point-of-care testing.
Keywords: Colorimetric assay; Dual-triggering; Glutathione; Metal-organic framework; Peroxidase.
Copyright © 2024. Published by Elsevier B.V.