Effective removal of Pb from industrial wastewater: A new approach to remove Pb from wastewater based on engineered yeast

J Hazard Mater. 2024 Nov 14:481:136516. doi: 10.1016/j.jhazmat.2024.136516. Online ahead of print.

Abstract

The use of synthetic biology to construct engineered strains has provided new perspectives for addressing Pb contamination; however, the large-scale treatment of contaminants is still limited by high operating costs and technological constraints. This study introduces a novel technique for applying engineered yeast in the removal of heavy metals, offering a solution to the cost and process scale challenges associated with utilizing engineered yeast. Hydrogen sulfide-producing engineered yeast strains were constructed based on existing strategies by knocking out the gene encoding the O-acetyl-L-homoserine mercapturic enzyme, which plays a role in sulfate assimilation. To facilitate the transition of engineered yeast from laboratory settings to industrial applications while reducing operating costs and addressing process scale-up issues, we proposes a new operational technology for engineered yeast based on their mechanistic understanding and a response surface optimization approach. The development and application of low-cost engineered media provide important guidance for utilizing engineered yeast to tackle Pb-contaminated wastewater and for the production of PbS crystalline nanomaterials. The industrial culture system was designed using economical materials and, through the response surface methodology, achieved removal rates of 99.02 ± 0.06 % and 80.95 ± 9.68 % of Pb²⁺ from Pb acid electrolyte and industrial Pb wastewater, respectively. This study presents a new technological solution for cost control and process scale-up based on the bioregulatory mechanisms of engineered yeast, laying the groundwork for their industrial application. Furthermore, it offers essential parameters and theoretical support for the industrial applications of engineered yeast in Pb wastewater treatment.

Keywords: Low cost; Pb pollution; Saccharomyces cerevisiae; Sulfate assimilation pathway; System optimization.