Conventional static culture of organoids necessitates weekly manual passaging and results in nonhomogeneous exposure of organoids to nutrients, oxygen, and toxic metabolites. Here, we developed a miniaturized spinning bioreactor, RPMotion, specifically optimized for accelerated and cost-effective culture of epithelial organoids under homogeneous conditions. We established tissue-specific RPMotion settings and standard operating protocols for the expansion of human epithelial organoids derived from the liver, intestine, and pancreas. All organoid types proliferated faster in the bioreactor (5.2-fold, 3-fold, and 4-fold, respectively) compared to static culture while keeping their organ-specific phenotypes. We confirmed that the bioreactor is suitable for organoid establishment directly from biopsies and for long-term expansion of liver organoids. Furthermore, we showed that after accelerated expansion, liver organoids can be differentiated into hepatocyte-like cells in the RPMotion bioreactor. In conclusion, this miniaturized bioreactor enables work-, time-, and cost-efficient organoid culture, holding great promise for organoid-based fundamental and translational research and development.
Keywords: CP: Biotechnology; CP: Stem cell; RPMotion; bioreactor; organoid; stem cell; suspension culture.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.