Liver fibrosis may lead to cirrhosis and even cancer without effective clinical medicine available. Previous studies demonstrated that galactan-containing pectins or pectin-like polysaccharides might target Galectin-3 (Gal-3) to impede fibrosis. This research aims to discover novel pectin-like galactan to interfere with fibrosis for potential new drug development. Thus, we purify a novel homogeneous Rhamnogalacturonan-I like polysaccharide with galactan input, XHH2, from the Crocus sativus flower. XHH2 (MW: 35.7 kDa) consists of rhamnose, galacturonic acid, galactose, and arabinose in ratios of 6.6: 6.1: 25.2: 12.1. The backbone of XHH2 comprises 1, 3, 6-Gal and 1, 3, 4-GalA, with branches at O-3 of 1, 3, 6-Gal and O-4 of 1, 3, 4-GalA. O-3 branches include 1, 3-Gal, 1, 4-Gal, 1, 6-Gal, T-Gal, and T-Glc, while O-4 branches consist of 1, 2, 4-Rha, 1, 4-GalA, 1, 5-Ara, T-Ara, T-Gal, and T-α-HexA. Surface plasmon resonance measurement shows that XHH2 binds to both Gal-3 and integrin β1 to block Gal-3/integrin β1 interaction. Mechanism studies further suggest that XHH2 inactivates hepatic stellate cells (HSCs) via disturbing the Gal-3/Integrin-β1/FAK pathway to alleviate liver injury and fibrosis in vitro & in vivo. XHH2 shows a favorable drug safety in the acute toxicity test of oral administration of XHH2 in mice. Overall, XHH2 is an active ingredient against liver fibrosis by targeting the interaction between Gal-3 and Integrin-β1.
Keywords: Galectin 3; Hepatic stellate cell; Liver fibrosis; Pectin; Polysaccharide structure.
Copyright © 2024 Elsevier Ltd. All rights reserved.