Groundwater is a vital natural resource that has been extensively used but, unfortunately, polluted by human activities, posing a potential threat to human health. Groundwater in the Yinchuan Region is contaminated with NO3-, which is harmful to the local population. This study utilized the eXtreme Gradient Boosting (XGBoost) model with the SHapley Additive exPlanations (SHAP) method to identify the key factors influencing groundwater nitrate pollution in the Yinchuan Region. The SHAP feature dependence plots revealed the intricate relationship between NO3- levels and TDS, Mn2+, TFe, and pH in complex groundwater systems. The results indicate that the high levels of groundwater NO3- are primarily caused by the combined effect of irrigation water from the Yellow River, shallow groundwater depth, unfavorable drainage, water recharge, overuse of fertilizers, and geological factors such as weathering nitrogen-bearing rocks. Hydrochemical parameters such as Mn2+, Fe2+, and pH create a strong reducing groundwater environment, resulting in lower NO3- concentrations in this region. Well depth and soil organic carbon at a depth of 80-100 cm have a negative impact on NO3- concentrations; conversely, sand in soil depths 0-20 cm and 100-150 cm and climatic factors such as precipitation have a weak but positive effect on the level of NO3- in groundwater in the region. The recommendation is to quickly and extensively implement a farming water-conservancy transformation project, reducing water-intensive crops, promoting groundwater use for irrigation in areas where soil salinization is a concern are proposed. This research could provide local agencies with a scientific foundation for sustainable management of farming and groundwater in the Yinchuan Region, ultimately benefiting the entire Yinchuan Plain.
Keywords: Denitrification; Fertilizer application; River water irrigation; Soil organic carbon; Well depth.
Copyright © 2024 Elsevier Ltd. All rights reserved.