The reactivity of the V[triple bond, length as m-dash]C t Bu multiple bonds in the complex (dBDI)V[triple bond, length as m-dash]C t Bu(OEt2) (C) (dBDI2- = ArNC(CH3)CHC(CH2)NAr, Ar = 2,6- i Pr2C6H3) with unsaturated substrates such as N[triple bond, length as m-dash]CR (R = Ad or Ph) and P[triple bond, length as m-dash]CAd leads to the formation of rare 3d transition metal compounds featuring α-aza-vanadacyclobutadiene, (dBDI)V(κ2- C , N - t BuCC(R)N) (R = Ad, 1; R = Ph, 2) and β-phospha-vanadacyclobutadiene moieties, (dBDI)V(κ2- C , C - t BuCPCAd) (3). Complexes 1-3 are characterized using multinuclear and multidimensional NMR spectroscopy, including the preparation of the 50% 15N-enriched isotopologue (dBDI)V(κ2- C , N - t BuCC(Ad)15N) (1-15N). Solid-state structural analysis is used to determine the dominant resonance structures of these unique pnictogen-based vanadacyclobutadienes. A systematic comparison with the known vanadacyclobutadiene (dBDI)V(κ2- C , C - t BuCC(H)C t Bu) (4) is also presented. Theoretical investigations into the electronic structure of 2-4 highlight the crucial role of unique V-heteroatom interactions in stabilizing the vanadacyclobutadienes and identify the most dominant resonance structures.
This journal is © The Royal Society of Chemistry.