Dental diseases pose significant public health challenges globally, affecting millions with conditions exacerbated by microbial-induced inflammation. Traditional natural enzymes, despite their antibacterial and anti-inflammatory capabilities, are limited by operational stability and environmental sensitivity. This review explores the revolutionary realm of nanozyme-artificial enzymes made from nanomaterials-which offer enhanced stability, cost-effectiveness, and ease of modification. We discuss the advent of nanozymes since their first recognition in 2007, emphasizing their enzyme-mimicking capabilities and applications in dental medicine, particularly for dental caries, pulpitis, periodontitis and peri-implantitis. This paper presents a comprehensive analysis of nanozymes' classification, mechanisms, and emerging applications, shedding light on their potential to revolutionize dental antibacterial treatments and addressing current challenges and future perspectives in their development.
This journal is © The Royal Society of Chemistry.