Features of the natural life cycle of the budding yeast Saccharomyces cerevisiae were crucial to its domestication as a laboratory experimental model, especially the ability to maintain stable haploid clones and cross them at will to combine alleles via meiosis. Stable haploidy results from mutations in HO, which encodes an endonuclease required for haploid-specific mating-type switching. Previous studies found an unexpected diversity of HO alleles among natural isolates within a small geographic area. We developed a hands-on field and laboratory activity for middle school students in Denver, Colorado, USA to isolate wild yeast from oak bark, identify species via DNA sequencing, and sequence HO from S. cerevisiae isolates. We find limited HO diversity in North American oak isolates, pointing to efficient, continuous dispersal across the continent. By contrast, we isolated the "dairy yeast", Kluyveromyces lactis, from a tree <10 m away and found that it represents a new population distinct from an oak population in an adjacent state. The outreach activity partnered middle school, high school, and university students in making scientific discoveries and can be adapted to other locations and natural yeast habitats. Indeed, a pilot sampling activity in southeast Texas yielded S. cerevisiae oak isolates with a new allele of HO and, from a nearby prickly pear cactus, a heat-tolerant isolate of Saccharomyces paradoxus.
Keywords: Yeast; adaptation; genetic population structure; genome sequencing; natural habitats; outreach; science education.
© The Author(s) 2024. Published by Oxford University Press on behalf of The Genetics Society of America.