Pecan scab, caused by the fungal pathogen Venturia effusa, is the most devastating disease of pecan (Carya illinoinensis) in the southeastern United States. Resistance to this pathogen is determined by a complex interaction between host genetics and disease pathotype with even field-susceptible cultivars being resistant to most scab isolates. To understand the underlying molecular mechanisms of scab resistance in pecan, we performed a transcriptome analysis of the pecan cultivar, 'Desirable', in response to inoculation with a pathogenic and a non-pathogenic scab isolate at three different time points (24, 48, and 96 hrs. post-inoculation). Differential gene expression and gene ontology enrichment analyses showed contrasting gene expression patterns and pathway enrichment in response to the contrasting isolates with varying pathogenicity. The weighted gene co-expression network analysis of differentially expressed genes detected 11 gene modules. Among them, two modules had significant enrichment of genes involved with defense responses. These genes were particularly upregulated in the resistant reaction at the early stage of fungal infection (24 h) compared to the susceptible reaction. Hub genes in these modules were predominantly related to receptor-like protein kinase activity, signal reception, signal transduction, biosynthesis and transport of plant secondary metabolites, and oxidoreductase activity. Results of this study suggest that the early response of pathogen-related signal transduction and development of cellular barriers against the invading fungus are likely defense mechanisms employed by pecan cultivars against non-virulent scab isolates. The transcriptomic data generated here provide the foundation for identifying candidate resistance genes in pecan against V. effusa and for exploring the molecular mechanisms of disease resistance.
Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.