Crystalline Assemblies of DNA Nanostructures and Their Functional Properties

Angew Chem Int Ed Engl. 2025 Jan 15;64(3):e202416948. doi: 10.1002/anie.202416948. Epub 2024 Dec 4.

Abstract

Self-assembly presents a remarkable approach for creating intricate structures by positioning nanomaterials in precise locations, with control over molecular interactions. For example, material arrays with interplanar distances similar to the wavelength of light can generate structural color through complex interactions like scattering, diffraction, and interference. Moreover, enzymes, plasmonic nanoparticles, and luminescent materials organized in periodic lattices are envisioned to create functional materials with various applications. Focusing on structural DNA nanotechnology, here, we summarized the recent developments of two- and three-dimensional lattices made purely from DNA nanostructures. We review DNA-based monomer design for different lattices, guest molecule assembly, and inorganic material coating techniques and discuss their functional properties and potential applications in photonic crystals, nanoelectronics, and bioengineering as well as future challenges and perspectives.

Keywords: DNA nanotechnology; DNA origami; crystallization; photonic crystals; self-assembly.

Publication types

  • Review

MeSH terms

  • DNA* / chemistry
  • Nanostructures* / chemistry
  • Nanotechnology / methods

Substances

  • DNA