Inertial Active Matter with Coulomb Friction

Phys Rev Lett. 2024 Nov 8;133(19):198301. doi: 10.1103/PhysRevLett.133.198301.

Abstract

Friction is central to the motion of active (self-propelled) objects such as bacteria, animals, and robots. While in a viscous fluid friction is described by Stokes's law, objects in contact with other solid bodies are often governed by more complex empirical friction laws. Here, we study active particles subject to Coulomb friction using a combination of active granular experiments and simulations, supported by theoretical predictions. The interplay of friction and activity forces induces a rich behavior resulting in three distinct dynamical regimes. While for low activity Brownian motion is recovered, for large activity we observe a dynamical stop and go regime that continuously switches from diffusion and accelerated motion. For greater activity, we observe a supermobile dynamical regime characterized by a fully accelerated motion which is described by an anomalous scaling of the diffusion coefficient with the activity. These findings cannot be observed with Stokes viscous forces typical of active swimmers but are central in dry active objects.