An asymmetric wound dressing introduced, inspired by the skin structure made of chitosan and alginate hydrogel as the bottom layer and electrospun PCL-silk sericin (PCL-SS) as the top layer. In addition, an anti-inflammatory, bactericidal and immunomodulatory substance, 10-hydroxydecanoic acid (10-HDA), known as queen bee acid, was loaded in inner layer. The wound dressing was thoroughly characterized and confirmed to meet the criteria of a standard wound dressing through in vitro and in vivo studies. Although the mesoporous hydrogel layer shows 175 % swelling after being immersed in PBS (pH = 7.4) for 60 min and 80 % degradation after 14 days, the top layer shows 28 % swelling and 19 % degradation in the same time intervals. The hydrogel layer supports rapid wound healing, while the top layer offers protection against infection and physical threats. The dressing demonstrated antibacterial properties and enhanced cell proliferation at 1 % 10-HDA. Finally, the wound healing performance of the complete dressing was investigated in vivo using wistar rat. Clinical and histopathological assessments, along with the analysis of biophysical parameters of the skin healing, confirm that wound dressing with 10-HDA significantly accelerates wound healing compared to control groups, without any inflammatory side effects.
Keywords: 10-HDA; Asymmetric wound dressing; Chitosan-alginate hydrogel; Electrospinning of PCL-Silk Sericin.
Copyright © 2024 Elsevier B.V. All rights reserved.