Purpose: Friedreich ataxia (FDRA) is a debilitating neurodegenerative disease that can have ophthalmological manifestations including visual dysfunction, nystagmus, and optic atrophy. However, severe photophobia has not been reported nor evaluated with functional magnetic resonance imaging (fMRI).
Methods: A 64-year-old white female with a 37-year history of FDRA presented to the eye clinic with worsening photophobia of 3 years. To measure her visual cortex activation and subjective responses during episodes of photophobia, she underwent event-related fMRI with light stimuli. In comparison, the same protocol was conducted in an individual with photophobia but without FDRA. After the fMRI, both patients were treated with 35 units of BoNT-A applied to the forehead.
Results: Analysis of visual cortex activity in response to light stimulus in the FDRA patient showed no correlation between blood oxygen level dependent (BOLD) activation and light stimuli in the first (r = -0.100, p = 0.235), and a weak negative correlation in the second half of the fMRI scan (r = -0.236 p = 0.004). In notable contrast, significant positive correlations were noted between visual cortex activity and the light stimulus (1st half: r = 0.742, p < 0.001, vs. 2nd half: r = 0.614, p < 0.001) in the comparator. Six weeks later, no improvement in photophobia was noted in either patient.
Conclusion and importance: Our study highlights photophobia as one potential ocular manifestation of FDRA and suggests that one underlying contributor may be a decoupled cortical neurovascular response to light. Our study provides novel information that may guide physiologic understanding and future treatments in this disease.
Keywords: Botulinum toxin A; Friedreich Ataxia; Functional magnetic resonance imaging; Photophobia.