Viscocohesive hyaluronan gel enhances stability of intravital multiphoton imaging with subcellular resolution

Neurophotonics. 2025 Jan;12(Suppl 1):S14602. doi: 10.1117/1.NPh.12.S1.S14602. Epub 2024 Nov 22.

Abstract

Multiphoton microscopy (MPM) has become a preferred technique for intravital imaging deep in living tissues with subcellular detail, where resolution and working depths are typically optimized utilizing high numerical aperture, water-immersion objectives with long focusing distances. However, this approach requires the maintenance of water between the specimen and the objective lens, which can be challenging or impossible for many intravital preparations with complex tissues and spatial arrangements. We introduce the novel use of cohesive hyaluronan gel (HG) as an immersion medium that can be used in place of water within existing optical setups to enable multiphoton imaging with equivalent quality and far superior stability. We characterize and compare imaging performance, longevity, and feasibility of preparations in various configurations. This combination of HG with MPM is highly accessible and opens the doors to new intravital imaging applications.

Keywords: hyaluronan gel; immersion media; intravital imaging; multiphoton microscopy; viscocohesive; viscoelastic.