Hybrid registration of the fibula for electromagnetically navigated osteotomies in mandibular reconstructive surgery: a phantom study

Int J Comput Assist Radiol Surg. 2024 Nov 25. doi: 10.1007/s11548-024-03282-0. Online ahead of print.

Abstract

Purpose: In mandibular reconstructive surgery with free fibula flap, 3D-printed patient-specific cutting guides are the current state of the art. Although these guides enable accurate transfer of the virtual surgical plan to the operating room, disadvantages include long waiting times until surgery and the inability to change the virtual plan intraoperatively in case of tumor growth. Alternatively, (electromagnetic) surgical navigation combined with a non-patient-specific cutting guide could be used, requiring accurate image-to-patient registration. In this phantom study, we evaluated the accuracy of a hybrid registration method for the fibula and the additional error that is caused by navigating with a prototype of a novel non-patient-specific cutting guide to virtually planned osteotomy planes.

Methods: The accuracy of hybrid registration and navigation was assessed in terms of target registration error (TRE), angular difference, and length difference of the intended fibula segments using three 3D-printed fibular phantoms with assessment points on osteotomy planes. Using electromagnetic tracking, hybrid registration was performed with point registration followed by surface registration on the lateral fibular surface. The fibula was fixated in the non-patient-specific cutting guide to navigate to planned osteotomy planes after which the accuracy was assessed.

Results: Registration was achieved with a mean TRE, angular difference, and segment length difference of 2.3 ± 0.9 mm, 2.1 ± 1.4°, and 0.3 ± 0.3 mm respectively after hybrid registration. Navigation with the novel cutting guide increased the length difference (0.7 ± 0.6 mm), but decreased the angular difference (1.8 ± 1.3°).

Conclusion: Hybrid registration showed to be a feasible and noninvasive method to register the fibula in phantom setup and could be used for electromagnetically navigated osteotomies with a novel non-patient-specific cutting guide. Future studies should focus on testing this registration method in clinical setting.

Keywords: Electromagnetic navigation; Electromagnetic tracking; Mandibular reconstruction; Osteocutaneous fibula free flap; Registration; Surgical navigation; Virtual surgical planning.