Background: Hepatoblastoma, the most common pediatric liver malignancy, is characterized by significant molecular heterogeneity and poor prognosis in advanced stages. Recent studies highlight the importance of metabolic reprogramming and epigenetic dysregulation in hepatoblastoma pathogenesis. This review aims to explore the metabolic alterations and epigenetic mechanisms involved in hepatoblastoma and how these processes contribute to tumor progression and survival.
Methods: Relevant literature on metabolic reprogramming, including enhanced glycolysis, mitochondrial dysfunction, and shifts in lipid and amino acid metabolism, as well as epigenetic mechanisms like DNA methylation, histone modifications, and non-coding RNAs, was reviewed. The interplay between these pathways and their potential as therapeutic targets were examined.
Results: Hepatoblastoma exhibits metabolic shifts that support tumor growth and survival, alongside epigenetic changes that regulate gene expression and promote tumor progression. These pathways are interconnected, with metabolic changes influencing the epigenetic landscape and vice versa.
Conclusions: The dynamic interplay between metabolism and epigenetics in hepatoblastoma offers promising avenues for therapeutic intervention. Future research should focus on integrating metabolic and epigenetic therapies to improve patient outcomes, addressing current gaps in knowledge to develop more effective treatments.
Keywords: cancer metabolism; epigenetics; hepatoblastoma; therapeutic targets; tumor biology.