The "architectural suitability" of scaffolds for bone tissue engineering is commonly evaluated by assessing the pore volume and the mean pore size (or pore size distribution, if possible) and comparing these values with the reference ranges of human cancellous bone. However, these two parameters cannot precisely describe the complex architecture of bone scaffolds and just provide a preliminary comparative criterion. Permeability is suggested as a more comprehensive and significant parameter to characterize scaffold architecture and mass transport capability, being also related to bone in-growth and, thus, functional properties. However, assessing the permeability of bioactive ceramics and glass scaffolds is a complex task from both methodological and experimental viewpoints. After providing an overview of the fundamentals about porosity in scaffolds, this review explores the different experimental and numerical approaches used to determine the permeability of porous bioceramics, describing the methodologies used (pump-based, gravity-based, acoustic and computational methods) and highlighting advantages and limitations to overcome (e.g., reliability issues and need for better standardization of the experimental procedures).
Keywords: bioactive glass; bone tissue engineering; fluid flow; hydroxyapatite; porosity.