Honey, a widely consumed food, is susceptible to contamination by various toxic substances during production. Tropane alkaloids, with their potent neurotoxicity, are frequently found in honey. Hence, there is an acute need for rapid and effective detection methods to monitor these alkaloids. Lateral flow immunoassay (LFIA), known for its simple operation, low cost, and reliable results, holds great promise. In this study, we developed an efficient and user-friendly analytical method for the simultaneous detection of six tropane alkaloids (atropine, L-hyoscyamine, scopolamine, anisodamine, homatropine, and apoatropine) in honey based on an AuNPs lateral flow immunoassay (AuNPs-LFIA) with broad-spectrum antibodies. Under optimal conditions, the calculated detection limits were 0.22, 0.29, 0.51, 6.34, 0.30, and 0.94 ng/mL, respectively. By diluting the honey sample five times, the contaminants can be readily detected using LFIA. Semi-quantitative and quantitative analyses can be completed within 17 min. This innovative method fills the void in LFIA for detecting tropane alkaloids and serves as a valuable reference for LFIA detection of honey samples, providing a crucial strategy for the accurate detection of these important compounds.
Keywords: AuNP-LFIA; honey; lateral flow immunoassay; multi-target; tropane alkaloids.