Hyperspectral image (HSI) reconstruction is a critical and indispensable step in spectral compressive imaging (CASSI) systems and directly affects our ability to capture high-quality images in dynamic environments. Recent research has increasingly focused on deep unfolding frameworks for HSI reconstruction, showing notable progress. However, these approaches have to break the optimization task into two sub-problems, solving them iteratively over multiple stages, which leads to large models and high computational overheads. This study presents a simple yet effective method that passes the degradation information (sensing mask) through a deep learning network to disentangle the degradation and the latent target's representations. Specifically, we design a lightweight MLP block to capture non-local similarities and long-range dependencies across both spatial and spectral domains, and investigate an attention-based mask modelling module to achieve the spatial-spectral-adaptive degradation representationthat is fed to the MLP-based network. To enhance the information flow between MLP blocks, we introduce a multi-level fusion module and apply reconstruction heads to different MLP features for deeper supervision. Additionally, we combine the projection loss from compressive measurements with reconstruction loss to create a dual-domain loss, ensuring consistent optical detection during HS reconstruction. Experiments on benchmark HS datasets show that our method outperforms state-of-the-art approaches in terms of both reconstruction accuracy and efficiency, reducing computational and memory costs.
Keywords: MLP network; degradation; hyperspectral image reconstruction; long dependency; sensing mask; spatial–spectral modelling.