Metal-organic frameworks (MOFs) exhibit promise as porous materials for carbon capture due to their design versatility and large pore sizes. The generic force fields (e.g., UFF and Dreiding) use one universal set of Lennard-Jones parameters for each element, while MOFs have a much richer local chemical environment than those chemical environments used to fit the UFF. When MOFs contain hard-Lewis acid metals, UFF systematically overestimates CO2 uptakes. To address this, we developed a workflow to affordably and efficiently generate reliable force fields to predict CO2 adsorption isotherms of MOFs containing metals from groups IIA (Mg, Ca, Sr, and Ba) and IIIA (Al, Ga, and In), connected to various carboxylate ligands. This method uses experimental isotherms as input. The optimal parameters are obtained by minimizing the loss function of the experimental and simulated isotherms, in which we use the Multistate Bennett Acceptance Ratio (MBAR) theory to derive the functionality relationship of loss functions in terms of force field parameters.