Peptide-based prodrugs, such as peptide-drug conjugates (PDCs), are currently being developed for cancer therapy. PDCs are considered single-component nanomedicines with various functionalities. The peptide moieties provide stability to the PDCs, which self-assemble into nanostructures in an aqueous medium. Several PDCs based on peptide moieties have been developed for targeted cancer therapy, prevention of multidrug resistance (MDR), and theranostic applications. Based on this information, next-level strategies have been developed to deliver therapeutics and diagnostics to tumor tissues. The induction of apoptosis-targeted therapy is a conceptual approach that has evolved. In this context, smart PDCs have been designed and explored to overcome tumor heterogeneity. This review highlights strategies for the targeted delivery of small molecules and theranostic applications. Moreover, a conceptual approach to induce apoptosis-targeted therapy was exploited through the delivery of smart PDC nanomedicines and their composites.
Keywords: Pluronic F-127; Pluronic F-68; apoptosis; caspase-3; doxorubicin; induced phenotype-targeted therapy; peptide-drug conjugate.