Background: Clinical decision support systems (CDSSs) are designed to assist in health care delivery by supporting medical practice with clinical knowledge, patient information, and other relevant types of health information. CDSSs are integral parts of health care technologies assisting in disease management, including diagnosis, treatment, and monitoring. While electronic medical records (EMRs) serve as data repositories, CDSSs are used to assist clinicians in providing personalized, context-specific recommendations derived by comparing individual patient data to evidence-based guidelines.
Objective: This targeted literature review (TLR) aimed to identify characteristics and features of both stand-alone and EMR-integrated CDSSs that influence their outcomes and benefits based on published scientific literature.
Methods: A TLR was conducted using the Embase, MEDLINE, and Cochrane databases to identify data on CDSSs published in a 10-year frame (2012-2022). Studies on computerized, guideline-based CDSSs used by health care practitioners with a focus on chronic disease areas and reporting outcomes for CDSS utilization were eligible for inclusion.
Results: A total of 49 publications were included in the TLR. Studies predominantly reported on EMR-integrated CDSSs (ie, connected to an EMR database; n=32, 65%). The implementation of CDSSs varied globally, with substantial utilization in the United States and within the domain of cardio-renal-metabolic diseases. CDSSs were found to positively impact "quality assurance" (n=35, 69%) and provide "clinical benefits" (n=20, 41%), compared to usual care. Among CDSS features, treatment guidance and flagging were consistently reported as the most frequent elements for enhancing health care, followed by risk level estimation, diagnosis, education, and data export. The effectiveness of a CDSS was evaluated most frequently in primary care settings (n=34, 69%) across cardio-renal-metabolic disease areas (n=32, 65%), especially in diabetes (n=13, 26%). Studies reported CDSSs to be commonly used by a mixed group (n=27, 55%) of users including physicians, specialists, nurses or nurse practitioners, and allied health care professionals.
Conclusions: Overall, both EMR-integrated and stand-alone CDSSs showed positive results, suggesting their benefits to health care providers and potential for successful adoption. Flagging and treatment recommendation features were commonly used in CDSSs to improve patient care; other features such as risk level estimation, diagnosis, education, and data export were tailored to specific requirements and collectively contributed to the effectiveness of health care delivery. While this TLR demonstrated that both stand-alone and EMR-integrated CDSSs were successful in achieving clinical outcomes, the heterogeneity of included studies reflects the evolving nature of this research area, underscoring the need for further longitudinal studies to elucidate aspects that may impact their adoption in real-world scenarios.
Keywords: chronic disease management; clinical decision support system; digital health; electronic health records; mobile phone; noncommunicable diseases; targeted literature review.
©Klaudia Grechuta, Pedram Shokouh, Ahmad Alhussein, Dirk Müller-Wieland, Juliane Meyerhoff, Jeremy Gilbert, Sneha Purushotham, Catherine Rolland. Originally published in the Interactive Journal of Medical Research (https://www.i-jmr.org/), 27.11.2024.